# SUBSTITUENT EFFECTS IN THE ELECTRON-IMPACT INDUCED FRAGMENTATION OF PHENOXASTANNINS

ISTVÁN LENGYEL, MICHAEL J. AARONSON AND JAMES P. DILLON Department of Chemistry, St. John's University, Jamaica, New York, 11432 (U.S.A.) (Received June 15th, 1970)

#### SUMMARY

The common initial step in the electron-impact induced fragmentation of five Sn,Sn-disubstituted phenoxastannins (9-oxa-10-stanna-9,10-dihydroanthracenes) and two closely related acyclic organotin analogues is ejection of a metal-ligand as a radical. The subsequent break-down pattern, however, is markedly dependent on the nature of substituents. The propensity of tin to remain in the Sn<sup>IV</sup> oxidation state is noted. Metastables indicate the competitive elimination of unusual neutral particles *e.g.*,  $C_6H_4$  and  $C_6H_4O$  from fragment ions. Examples of Sn-O bond formation are presented. Complex skeletal and multiple hydrogen rearrangements involving C-C bond formation with concomitant loss of both heteroatoms [*e.g.*, transitions *m/e*  $303 \rightarrow 91$ , *m/e*  $227 \rightarrow 91$  in (I) and *m/e*  $289 \rightarrow 153$  in (II) and (III)] have been uncovered by accurate mass measurements and computer-aided correlation of an elastable peaks. Complete "element maps", to determine the elemental composition of all ions, have been recorded for (III) and (VI). Low voltage (12 eV) studies were undertaken to identify the energetically favorable reaction paths.

INTRODUCTION

While the mass spectra of some simple tetraalkyl and tetraaryl derivatives of tin have been the subject of previous investigations<sup>1-4</sup>, we are unaware of any previous detailed published report on electron-impact induced reactions of heterocyclic organotin compounds. As part of a continuing study<sup>5-8</sup> of the electron-impact induced fragmentation of heterocyclic organometallic compounds, the mass spectra (Figs. 1–5) of five 10,10-disubstituted phenoxastannins [(I)-(V)], were recorded and analyzed. The mass spectral fragmentation of the variously substituted tin heterocycles are compared and tentative fragmentation pathways suggested. For comparison, two closely related model substances without heterocyclic ring, viz., diethylbis(ophenoxyphenyl)tin (VI) and tetrakis(o-phenoxyphenyl)tin (VII) were included in this study (Figs. 6 and 7).

In view of the unique structure of these compounds, it was of considerable interest to examine their fragmentation, in order to determine what stable particles are eliminated after ionization in the mass spectrometer, what the energetically most favorable paths of decomposition are, to what degree a reversal of the preparative SCHEME 1





chemical reactions used in the synthesis occur. Furthermore, it was of interest to determine the effect of (i) the nature of substituents in position 10 and (ii) elimination of the central ring altogether [(VI) and (VIII)] will have on the general fragmentation pattern. Correlations between processes occurring in the mass spectrometer and in thermal reactions are also of interest.

The energetics of the fragmentation processes were studied by comparing 70 eV and 12 eV spectra. To aid interpretation, accurate masses and elemental com-



Fig. 1. Mass spectrum of 10,10-dimethylphenoxastannin taken at 70 eV

J. Organometal. Chem., 25 (1970) 403-420



Fig. 2. Mass spectrum of 10,10-diethylphenoxastannin taken at 70 eV.



Fig. 3. Mass spectrum of 10,10-dibutylphenoxastannin taken at 70 eV.

positions of all ions were determined for compounds (III) and (VI) by recording complete high resolution spectra and processing the data through a computer in the form of "elemental maps"<sup>9</sup>. The elemental compositions of selected ions in the mass spectra of compounds (III) and (VI) are listed in Table 2. Some of the spectra exhibit a number of remarkably abundant doubly-charged ions. Doubly-charged ions occurring at a non-integral mass number are not included in the bar graphs.

Results of the present investigation indicate that some modes of fragmentation of the formally similar heterocycles containing both an oxygen and a  $\sigma$ -bonded tin atom are markedly dependent on the nature of the ligands attached to the metal.



Fig. 4. Mass spectrum of 10,10-diphenylphenoxastannin taken at 70 eV.



Some elimination and skeletal rearrangement reactions, which are without precedent, have been found.

**RESULTS AND DISCUSSION** 

# A. Metal-containing ions

(1). Molecular ion  $[Sn(R)_4]^{+}$ . The molecular ions of all compounds are either absent or of very low abundance. This is consistent with earlier observations<sup>10-13</sup> made on simple organotin derivatives, and is due to the abnormality of the Sn<sup>v</sup> oxidation state. The latter is also responsible for the fact that the spectra contain



Fig. 6. Mass spectrum of diethylbis(o-phenoxyphenyl)tin taken at 70 eV.



Fig. 7. Mass spectrum of tetrakis(o-phenoxyphenyl)tin taken at 70 eV.

only a few odd-electron, metal-containing fragment ions with tetrasubstituted tin.

(2). Metal IV oxidation state  $[Sn(R)_3]^+$ . The predominant primary fragmentation pathway for all compounds investigated is the elimination of a radical from the molecular ion to form a trisubstituted  $(Sn^{IV})$  metal ion (a). The reason for the overwhelming predominance of this fragmentation pathway in the tricyclic systems studied, is that the ion formed,  $(M-R)^+$ , contains the metal in the Sn<sup>IV</sup> oxidation state, which is the most stable for tin<sup>10,12</sup>. The metal-aryl bond is much stronger than the metal-alkyl bond. In compound (VI), in which tin is attached to two alkyl and two aryl ligands, direct comparison of bond strengths is possible: the  $(M-C_2H_5)^+$  peak in the spectrum of compound (VI) is about 100 times more abundant than the (Continued p. 413)

# TABLE 1ª

# METASTABLE IONS AND TRANSITIONS

| m <sup>*</sup> obs. | $m^*$ calcd. | Transition                                         |
|---------------------|--------------|----------------------------------------------------|
| Compound (          | [)           |                                                    |
|                     |              | -100                                               |
| 147.0               | 146.93       | 303  211                                           |
| 138.0               | 138.01       | $140 \xrightarrow{-\pi} 139$                       |
| 108.0               | 108.12       | $303 \xrightarrow{-SoH_2} 181$                     |
| 93.0                | 93.15        | $303 \xrightarrow{-\operatorname{SnCH}_3} 168$     |
|                     |              | -0,0                                               |
| 60.0                | 60.15        | 303                                                |
|                     |              |                                                    |
| 47.5                | 47.52        | 303 <del></del> 120                                |
| 36.5                | 36.48        | $227 \xrightarrow{-SnO} 91$                        |
| 27.0                | 27.33        | $303 \xrightarrow{-C_6H_4OS_D} 91$                 |
| Compound (I         | 11)          |                                                    |
| 263.0<br>164.0      | 263.47       | $317 \xrightarrow{-H_2C=CH_2} 289$<br>Unassigned   |
| 151.0               | 151.01       | $153 \xrightarrow{-H} 152$                         |
| 117.5               | 117.64       | $169 \xrightarrow{-100} 141$                       |
| 99.0                | 98.83        | $289 \xrightarrow{-5n} 169$                        |
| 81.0                | 81.00        | $289 \xrightarrow{-5n0} 153$                       |
|                     |              | $-\bigcirc; \bigcirc$                              |
| 50.0                | 49.83        | 289                                                |
| Compound (          | 111)         | - C H                                              |
| 242.0<br>189.0      | 242.09       | $345 \xrightarrow{-\text{Carr}} 289$<br>Unassigned |
| 157.0               | 156.99       | $289 \xrightarrow{-c_{c_{1}}} 213$                 |
| 82.0                | 81.81        | $345 \xrightarrow{-\operatorname{Suc}_{Hg}} 168$   |
|                     |              |                                                    |
| 50.0                | 49.83        | 289 → 120                                          |
| 29.5                | 29.49        | $57 \xrightarrow{-CH_4} 4i$                        |

.

J. Organometal. Chem., 25 (1970) 403-420

(Continued)

#### m\* obs. m\* calcd. Transition Compound (IV) -C6H4 228.0 228.82 365 -+ 289 164.0 Unassigned 106.0 106.33 365 197 50.0 49.83 289 -→ 120 Compound (V)228.0 Unassigned 167.0 167.01 169 168 -н. 138.0 138.01 140 139 -сно-115.0 115.01 + 139 168 - Sn(C1)2 79.0 78.84 358 • 168 74.3 74.38 323 155 - SnCl\* 59.5 59.82 323 → 139 -ci\* 44.5 44.58 323 -→ 120 Compound (VI) - CH3 - CH3 429.0 428.85 487 457 -сн, CH 289.5 289.59 347 317 -C6H4O -C2H6 273.6 273.56 487 -→ 365 -H2C=CH2 289 263.47 317 263.5 $\cap$ ---516 347 233.5 233.35 487 · 206.0 206.34 + 317 182.8 182.76 457 289

#### TABLE 1 (continued)

(Continued)

409

| <i>m</i> * obs. | m <sup>*</sup> calcd. | Transition                                           |
|-----------------|-----------------------|------------------------------------------------------|
|                 |                       | -01_0                                                |
| 171.5           | 171.50                | 487 <del>− CH<sub>3</sub> − CH<sub>3</sub></del> 289 |
| 151.0           | 151.01                | $153 \xrightarrow{-H^{\bullet}} 152$                 |
| 144.0           | 143.67                | $365 \xrightarrow{-s_{BO}} 229$                      |
|                 |                       | -0,0                                                 |
| 119.0           | 119.08                | $381 \xrightarrow{0} 213$                            |
| 118.0           | 117.64                | $169 \xrightarrow{-co} 141$                          |
| 99.5            | 99.83                 | $289 \xrightarrow{-5n} 169$                          |
|                 |                       | $-\hat{O}$                                           |
| 93.0            | 93.16                 | $487 \xrightarrow{-CH_3 - CH_3 - C_6H_4} 213$        |
| 82.0            | 82.30                 | $347 \xrightarrow{-\operatorname{Sn}(C_2H_5)_2} 169$ |
| 81.0            | 81.00                 | $289 \xrightarrow{-\operatorname{SnO}} 153$          |
|                 |                       |                                                      |
| 50.0            | 49.83                 | $289 \longrightarrow 120$                            |
| Compound (V     | II)                   |                                                      |
| 398.0           |                       | Unassigned                                           |
|                 |                       |                                                      |
| 333.0           | 333.09                | 627→ 457                                             |
|                 |                       | -00                                                  |
| 291.3           | 291.52                | 457 → 365                                            |
| 228.0229.0      | 228.82                | $365 \xrightarrow{-C_6H_4} 289$                      |
|                 |                       | -010                                                 |
| 182.0–183.0     | 182.76                | 457 → 289                                            |
|                 |                       |                                                      |
| 119.0           | 119.08                | 381                                                  |
| 117.7           | 117.64                | $169 \xrightarrow{-co} 141$                          |
| 98.6            | 98.83                 | $289 \xrightarrow{-Sn} 169$                          |
|                 |                       | -0,0                                                 |
| 49.8            | 49.83                 | 289                                                  |

TABLE 1 (continued)

<sup>a</sup> The metastable correlations were calculated by computer using a program similar to the one employed by Rhodes et al.<sup>18</sup>. Final assignments were made manually utilizing intensity data for  $m_1$  and  $m_2$ .

.

## TABLE 2

THE ELEMENTAL COMPOSITION OF SELECTED IONS IN COMPOUNDS (III) AND (VI)

| $\begin{array}{cccc} (m/e) & (mmu) \\ \hline \\ \hline \\ Compound (III) \\ 402.09989 & C_{2o}H_{2o}OSn & -0.60 \\ 345.02949 & C_{16}H_{17}OSn & -0.50 \\ 288.96870 & C_{12}H_9OSn & +1.20 \\ 212.93620 & C_6H_5OSn & +0.00 \\ 196.94260 & C_6H_5Sn & +1.30 \\ 184.94160 & C_5H_5Sn & +0.30 \\ 176.97440 & C_4H_9Sn & +1.80 \\ 169.06450 & C_{12}H_9O & -0.70 \\ 168.05769 & C_{12}H_9O & +0.20 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compound (III) $402.09989$ $C_{20}H_{26}OSn$ $-0.60$ $345.02949$ $C_{16}H_{17}OSn$ $-0.50$ $288.96870$ $C_{12}H_9OSn$ $+1.20$ $212.93620$ $C_6H_5OSn$ $+0.00$ $196.94260$ $C_6H_5Sn$ $+1.30$ $184.94160$ $C_5H_5Sn$ $+0.30$ $176.97440$ $C_4H_9Sn$ $+1.80$ $169.06450$ $C_{12}H_9O$ $-0.70$ $168.05769$ $C_{12}H_9O$ $+0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $402.09989$ $C_{20}H_{26}OSn$ $-0.60$ $345.02949$ $C_{16}H_{17}OSn$ $-0.50$ $288.96870$ $C_{12}H_9OSn$ $+1.20$ $212.93620$ $C_6H_5OSn$ $+0.00$ $196.94260$ $C_6H_5Sn$ $+1.30$ $184.94160$ $C_5H_5Sn$ $+0.30$ $176.97440$ $C_4H_9Sn$ $+1.80$ $169.06450$ $C_{12}H_9O$ $-0.70$ $168.05769$ $C_{12}H_9O$ $+0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 288.96870 $C_{12}H_9OSn$ + 1.20         212.93620 $C_6H_5OSn$ + 0.00         196.94260 $C_6H_5Sn$ + 1.30         184.94160 $C_5H_5Sn$ + 0.30         176.97440 $C_4H_9Sn$ + 1.80         169.06450 $C_{12}H_9O$ - 0.70         168.05769 $C_{12}H_9O$ + 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $196.94260$ $C_6H_5Sn$ $+ 1.30$ $184.94160$ $C_5H_5Sn$ $+ 0.30$ $176.97440$ $C_4H_9Sn$ $+ 1.80$ $169.06450$ $C_{12}H_9O$ $- 0.70$ $168.05769$ $C_{-2}H_2O$ $+ 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 184.94160 $C_5H_5Sn$ +0.30         176.97440 $C_4H_9Sn$ +1.80         169.06450 $C_{12}H_9O$ -0.70         168.05769 $C_{12}H_9O$ +0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $176.97440$ $C_4H_9Sn$ $+ 1.80$ $169.06450$ $C_{12}H_9O$ $-0.70$ $168.05769$ $C_{12}H_9O$ $+ 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $\begin{array}{cccc} 169.06450 & C_{12}H_{9}O & -0.70 \\ 168.05769 & C_{12}H_{9}O & \pm 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $16805769$ C = H = O = $\pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $153.07069$ $C_{12}H_9$ $+0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $152.06320$ $C_{12}H_8$ +0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 141.07059 $C_{11}H_9$ +0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 139.05479 $C_{11}H_7$ +0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 136.90240 SnOH –2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 120.90940 SnH -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 119.90310 Sn +0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $78.04569$ $C_6H_6$ -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $C_6H_5 - 0.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $C_6H_4 - 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $57.06870$ $C_4H_9$ $-1.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $51.02249$ $C_4H_3$ $-0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $43.05450$ $C_3H_7$ $-0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $41.03900$ $C_3H_5$ $-0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Compound (VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $48707300$ C H O Sp $\pm 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6702409 C H $-0.5n$ $-0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $C_{24}r_{17}C_{25}r_{17}C_{26}r_{17}C_{25}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{26}r_{17}C_{2$ |  |
| $347.04819$ C. H. OSn $\pm 2.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $217,00009$ C. H. OSp $\pm 1.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $C_1 + C_2 + C_3 + C_1 + C_3 $ |  |
| $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 212 93610 C.H. OSn -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 19694110 C <sub>c</sub> H <sub>2</sub> Sn $-0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 184.94330 C <sub>c</sub> H <sub>c</sub> Sn $+2.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 169.06419 CHaQ -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 168.05749 CH <sub>2</sub> O +0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $153.07090$ $C_{12}A_{8}O$ $1050$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $15206090$ $C_{12}H_{2}$ $-160$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $C_{12} C_{13} $ |  |
| $13905409$ $C_{11}H_2$ $-0.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 13690340 SnOH $-140$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 120.90870 SnH -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 119.90250 Sn +0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 92.02569 CH.O0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 78.04529 C <sub>c</sub> H <sub>c</sub> -0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $77.03809$ $C_{c}H_{c}$ -0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 76.03029 C <sub>4</sub> H <sub>4</sub> -0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

| Compound (I) |                           | Compound (II) |                           | Compound (III) |                           |  |
|--------------|---------------------------|---------------|---------------------------|----------------|---------------------------|--|
| m/e          | Relative<br>abundance (%) | m/e           | Relative<br>abundance (%) | m/e            | Relative<br>abundance (%) |  |
| 299          | 54.4                      | 168           | 25.0                      | 285            | 10.9                      |  |
| 300          | 45.5                      | 169           | 15.5                      | 286            | 9.1                       |  |
| 301          | 81.8                      | 170           | 31.0                      | 287            | 18.2                      |  |
| 302          | 45.5                      | 309           | 5.1                       | 288            | 10.9                      |  |
| 303          | 100.0                     | 310           | 1.7                       | 289            | 25.4                      |  |
| 304          | 27.3                      | 311           | 3.4                       | 290            | 5.4                       |  |
| 305          | 27.3                      | 312           | 3.4                       | 291            | 9.1                       |  |
| 306          | 9.0                       | 313           | 44.8                      | 292            | 1.8                       |  |
| 307          | 27.3                      | 314           | 32.7                      | 293            | 5.4                       |  |
|              |                           | 315           | 75.8                      | 337            | 5.4                       |  |
|              |                           | 316           | 37.9                      | 338            | 1.8                       |  |
|              |                           | 317           | 100.0                     | 339            | 3.6                       |  |
|              |                           | 318           | 17.2                      | 340            | 3.6                       |  |
|              |                           | 319           | 17.2                      | 341            | 43.5                      |  |
|              |                           | 320           | 3.4                       | 342            | 32.8                      |  |
|              |                           | 321           | 18.9                      | 343            | 73.8                      |  |
|              |                           | 322           | 5.1                       | 344            | 38.2                      |  |
|              |                           |               |                           | 345            | 100.0                     |  |
|              |                           |               |                           | 346            | 18.2                      |  |
|              |                           |               |                           | 347            | 16.4                      |  |
|              |                           |               |                           | 348            | 5.4                       |  |
|              |                           |               |                           | 349            | 20.0                      |  |
|              |                           |               |                           | 350            | 5.4                       |  |
| Comp         | ound (IV)                 | Compound (V)  |                           | Compound (VI)  |                           |  |
| 359          | 2.5                       | 168           | 100.0                     | 343            | 34.8                      |  |
| 360          | 2.5                       | 169           | 19.4                      | 344            | 26.1                      |  |
| 361          | 43.4                      | 170           | 9.6                       | 345            | 52.2                      |  |
| 362          | 31.9                      | 354           | 21.6                      | 346            | 30.4                      |  |
| 363          | 76.2                      | 355           | 12.9                      | 347            | 69.6                      |  |
| 364          | 40.9                      | 356           | 38.7                      | 348            | 17.4                      |  |
| 365          | 100.0                     | 357           | 21.6                      | 349            | 17.4                      |  |
| 366          | 22.1                      | 358           | 58.2                      | 350            | 8.7                       |  |
| 367          | 16.3                      | 359           | 21.6                      | 351            | 17.4                      |  |
| 368          | 4.1                       | 360           | 35.5                      | 483            | 47.8                      |  |
| 369          | 17.2                      | 361           | 9.7                       | 484            | 43.4                      |  |
| 370          | 4.9                       | 362           | 19.4                      | 485            | 78.3                      |  |
| 438          | 3.3                       | 363           | 6.4                       | 486            | 52.2                      |  |
| 439          | 3.3                       | 364           | 9.7                       | 487            | 100.0                     |  |
| 440          | 4.9                       |               |                           | 488            | 30.4                      |  |
| 441          | 3.3                       |               |                           | 489            | 21.7                      |  |
| 442          | 5.7                       |               |                           | 490            | 13.0                      |  |
| 443          | 2.5                       |               |                           | 491            | 21.7                      |  |
| 444          | 1.6                       |               |                           |                |                           |  |

# TABLE 3

mass spectra of compounds (I)–(VII) taken at 12 eV

J. Organometal. Chem., 25 (1970) 403-420

0.8

1.6

445

446

| <br> |  |
|------|--|

| TABLE | 3 ( | (continued) | Ì |
|-------|-----|-------------|---|
|-------|-----|-------------|---|

| Compound (VII) |                           |     |                           |     |                           |     |                           |
|----------------|---------------------------|-----|---------------------------|-----|---------------------------|-----|---------------------------|
| m/e            | Relative<br>abundance (%) | m/e | Relative<br>abundance (%) | m/e | Relative<br>abundance (%) | m/e | Relative<br>abundance (%) |
| 361            | 38.9                      | 455 | 72.2                      | 552 | 5.6                       | 702 | 9.3                       |
| 362            | 33.3                      | 456 | 46.3                      | 553 | 3.7                       | 703 | 14.8                      |
| 363            | 68.5                      | 457 | 87.0                      | 554 | 5.6                       | 704 | 7.4                       |
| 364            | 37.0                      | 458 | 27.8                      | 619 | 5.6                       | 705 | 5.6                       |
| 365            | 88.9                      | 459 | 16.7                      | 620 | 3.7                       | 714 | 7.4                       |
| 366            | 22.2                      | 460 | 9.3                       | 621 | 5.6                       | 715 | 7.4                       |
| 367            | 16.7                      | 461 | 16.7                      | 622 | 5.6                       | 716 | 9.3                       |
| 368            | 5.6                       | 462 | 7.4                       | 623 | 44.4                      | 717 | 7.4                       |
| 369            | 16.7                      | 529 | 3.7                       | 624 | 42.6                      | 718 | 11.1                      |
| 370            | 5.6                       | 530 | 3.7                       | 625 | 75.9                      | 719 | 5.6                       |
| 377            | 7.4                       | 531 | 5.6                       | 626 | 55.5                      | 720 | 3.7                       |
| 378            | 5.6 <sup>°</sup>          | 532 | 3.7                       | 627 | 100.0                     | 792 | 7.4                       |
| 379            | 9.3                       | 533 | 7.4                       | 628 | 42.6                      | 793 | 9.3                       |
| 380            | 7.4                       | 546 | 11.1                      | 629 | 22.2                      | 794 | 14.8                      |
| 381            | 12.9                      | 547 | 11.1                      | 130 | 11.1                      | 795 | 12.9                      |
| 451            | 5.6                       | 548 | 18.5                      | 631 | 18.5                      | 796 | 18.5                      |
| 452            | 9.3                       | 549 | 12.9                      | 632 | 9.3                       | 797 | 9.3                       |
| 453            | 40.7                      | 550 | 24.1                      | 699 | 7.4                       | 798 | 5.6                       |
| 454            | 35.2                      | 551 | 9.3                       | 700 | 7.4                       | 799 | 3.7                       |
|                |                           | _   |                           | 701 | 11.1                      | 800 | 3.7                       |

 $(M-169)^+$  peak, corresponding to the loss of one of the aryl substituents. Where possible, then, an alkyl radical is eliminated preferentially.

Further fragmentation of ion (a) proceeds by elimination of neutral organic particles. The spectra show three major fragmentation reactions for the  $(M-R)^+$ even-electron ion: when R is methyl or phenyl, [(I), (IV)] the neutral particles most readily lost are  $C_{12}H_8O$  (dibenzofuran),  $C_6H_4$  (benzyne?), and  $C_6H_4O$  to form ions (b), (c), and (d), respectively. If the metal ligands (R) contain two carbon atoms or more, as in the case of compounds (II) and (III), elimination of a neutral alkene moiety from the alkyl side chain with rearrangement of a hydrogen from carbon to tin is the predominant process, yielding ion (e), m/e 289. It has been postulated previously that the migrating hydrogen originates mainly from the  $\beta$ -carbon.

In this connection, it was interesting to investigate the spectra of compound (IV), in which no easily transferable hydrogen is available from the 10-substituents, the latter elimination thus being blocked. Subsequent fragmentation of ion (a) in compound (IV), therefore, takes different courses: loss of dibenzofuran and  $C_6H_4$  (confirmed by metastables) predominates. By coincidence, ion (c) in the mass spectrum of compound (IV) occurs at the same mass (m/e 289) as ion (e) in (II) and (III).

One of the pathways of the further fragmentation of ion (e) involves elimination of  $C_6H_4$  to afford the resonance-stabilized ion (f), m/e 213. The formation of ion (f) requires fission of several bonds, compensated for by the formation of the Sn-O bond. The latter is facilitated by anchimeric assistance from the neighboring oxygen function. Ion (f) subsequently eliminates a second  $C_6H_4$  particle yielding ion (g), m/e





\* denotes fragmentations for which metastable peaks are present.

SCHEME 3



137, encompassing the strong<sup>14</sup> Sn=O double bond. Ion (e) can also afford ion (h), m/e 197, by loss of the neutral particle C<sub>6</sub>H<sub>4</sub>O.

Ion (c), upon elimination of  $C_6H_4$ , yields R-Sn=O, (i), via a four-centered rearrangement, involving migration of oxygen from carbon to tin. One of the factors facilitating this remarkable rearrangement-elimination reaction is the high stability of the Sn<sup>IV</sup> even-electron product ion. Elimination of  $C_6H_4$  from ion (d) may lead to RSn<sup>+</sup> (b).

Finally, the  $(M-R)^+$  ion in compound (VI) loses the elements of ethane  $(m^*$  at 429.0) to give ion (j), m/e 457, which in turn can undergo one of several elimination reactions entirely analogous to those previously discussed: it can eject the neutral particle  $C_6H_4$  to form ion (k), m/e 381, or  $C_6H_4O$  to form ion (l), m/e 365, or it may eliminate the elements of dibenzofuran to afford ion (e), m/e 289, (Schemes 4–5). The SCHEME 4



latter further fragments in a manner previously discussed for compounds (II) and (III) (Scheme 3). The m/e 487 ion in compound (VI) can fragment alternatively by eliminating the elements of diphenyl ether to form ion (m), m/e 317. Interestingly, metastables indicate that transitions m/e 487 $\rightarrow m/e$  365 and m/e 487 $\rightarrow m/e$  213 occur partly in *one step*, involving simultaneous elimination of two and three neutral particles respectively.

415





The fragmentation of compound (VII) also starts with the loss of a radical  $(C_{12}H_9O)$ , leading to ion (a), m/e 627. This ion, in turn, eliminates the elements of diphenyl ether to afford ion (j), m/e 457 [also present in compound (VI)], the subsequent fragmentation reactions of which are analogous to the ones depicted in Schemes 4 and 5 for compound (VI).

The spectra of 10,10-dimethylphenoxastannin (I) are marked by some strong ions, the formation of which requires extensive skeletal rearrangements. Such ions are, for example, m/e 91, 181, 120 and 165. Metastables identify at least two progenitors for ion m/e 91: even-electron ions m/e 303  $(M-CH_3)^+$  and m/e 227. Formation of m/e 91 from the former requires methyl migration from the metal to one of the phenyl rings followed by heterolytic C-O bond cleavage with concomitant ejection of  $C_6H_4OSn$ . Formation of m/e 91 from ion m/e 227 can be rationalized by a similar  $Sn \rightarrow C$  methyl shift followed by elimination of SnO (Scheme 6).

Alternatively, the  $(M-CH_3)^+$  ion (m/e 303) eliminates  $SnH_2$ , as confirmed by a metastable, to give a metal-free even-electron ion at m/e 181. A rationalization for this process, insertion of a  $CH_2$  into a tin-phenyl bond with subsequent rearrangement of a second hydrogen atom to the metal, is depicted in Scheme 6.

Metastable evidence (cf., Table 1) indicates an additional decomposition path also requiring skeletal rearrangement for ion (a) in compounds (I) and (V): concomitant ejection of an R radical (CH<sub>3</sub> and Cl<sup>\*</sup>, respectively) and the elements of dibenzofuran (Schemes 6–7) to give the Sn-ion at m/e 120.



Arrows with loop indicate fragmentations accompanied by skeletal rearrangement SCHEME 7



The fourth aforementioned rearrangement-ion, m/e 165, is metal-containing, as shown by the observed isotope pattern characteristic of tin. No metastable peak is present to indicate the genesis of this unique ion. Its formation must involve multiple bond cleavages and Sn-O bond formation.

(3). Metal III oxidation state  $[Sn(R)_2]^+$ . Isolated examples of the elimination neutral particles from the molecular ions of tin compounds resulting in an odd-electron tin-ion have been reported<sup>10</sup>. One example of this is the ejection of biphenyl from tetraphenyltin:

 $Ph_4Sn^{\ddagger} \rightarrow SnPh_2^{\ddagger} + Ph_2$ 

Similar fragmentations are not found in the compounds investigated in this study, due to the very low abundance of Sn<sup>v</sup> odd-electron ions themselves.

(4). Metal II oxidation state  $(SnR)^+$ . As expected from the known<sup>12</sup> stability of divalent tin species, there are moderately abundant Sn<sup>II</sup> ions in our spectra. The

progenitor of the RSn<sup>+</sup> peaks is the  $(M-R)^+$  ion, as shown by metastables for compounds (I), (IV) and (V). The formation of SnH<sup>+</sup> ions in tin compounds with aromatic ligands has been noted in a previous investigation<sup>11</sup>. In the compounds of the present study, the SnH<sup>+</sup> ion originates from the m/e 289 (e) ion in a manner similar to the formation of the RSn<sup>+</sup> ion in compounds (I–V) (Scheme 2).

(5). Metal I oxidation state  $(Sn^{+})$ . The Sn<sup>+</sup> ion dominates many of the spectra recorded. No simple relationship between structure and abundance of the Sn<sup>+</sup> ion, could be found.

## B. Metal-free ions

In contrast to other organometallic compounds (see for example, the recent review by Chambers, ref. 10), the spectra of the compounds discussed in this paper exhibit many abundant metal-free ions. This can be explained readily, as: (i) the second heteroatom (oxygen) stabilizes the positive charge and (ii) the two  $\pi$ -electron systems can form highly stable fused polycyclic aromatic ions.

The most notable of these metal-free ions is at m/e 168 (q), abundant in all compounds. This ion originates directly from the molecular ion by elimination of the neutral particle R<sub>2</sub>Sn and can best be represented as (q) (Scheme 2), dibenzofuran. Ion (q) decomposes by the consecutive ejection of CO and H<sup>•</sup> to form ion (r), m/e 139, as noted previously<sup>15</sup>.

SCHEME 8



J. Organometal. Chem., 25 (1970) 403-420

Another metal-free ion present in the spectra of compounds (II) and (III) and to a larger extent in compounds (VI) and (VII) is ion (s), m/e 169. This ion is derived from ion (e), m/e 289 by the loss of tin, and rearrangement of a hydrogen. Subsequent decomposition of ion (s) by elimination of CO yields the highly stable benzotropylium ion (t), m/e 141. The latter path is analogous to the mechanism discussed by Beynon<sup>16</sup> for the formation of ion m/e 141 from diphenyl ether. It should be noted that in compound (VI) ions m/e 168 and 169 are accompanied by the formation of m/e 170. The latter, formally diphenyl ether, must be formed by the rearrangement of one hydrogen from the ethyl ligands to the phenyl ring. The metastable-confirmed ejection of SnO from ion (e), m/e 289, leads to ion m/e 153, which subsequently loses a hydrogen radical to form ion (u), m/e 152.

There are some other oxygen-containing but metal-free even-electron ions in the spectra of compounds (II) and (III), the formation of which involves more complex skeletal rearrangement processes. Such ions are, for example, m/e 195 (v) and m/e 181 (o), formally  $(M-RSnH_2)^+$  and  $(M-RCH_2SnH_2)^+$ , respectively. A reasonable mechanism accounting for these ions is depicted in Scheme 9: double hydrogen rearrangement from carbon to tin in ion  $(M-R)^+$  (m/e 317) for compound (II), and the loss of ethylene from  $(M-R)^+$  (m/e 345) for compound (III) followed by ring expansion and loss of SnH<sub>2</sub> or H<sub>2</sub>Sn=CH<sub>2</sub> leads to ions m/e 195 and 181, respectively.

SCHEME 9



EXPERIMENTAL

The synthesis of the organotin compounds has been described previously<sup>17</sup>.

The conventional ("low resolution") mass spectra were recorded on a Hitachi RMU-6D instrument at 70 eV and 12 eV and 50  $\mu$ A, using the direct insertion method. The high resolution data, in the form of elemental map, were obtained on a CEC 21-110B doubly focusing mass spectrometer in conjunction with an IBM 1801 computer system.

#### ACKNOWLEDGEMENT

We thank Professor E. J. Kupchik for kindly providing most of the samples used and Professor K. Biemann and his associates for the high resolution mass spectra of compounds (III) and (VI), recorded at the M.I.T. high resolution mass spectrometry facility, supported by National Institute of Health Research Grant No. FR00317.

#### REFERENCES

- 1 D. B. CHAMBERS AND F. GLOCKLING, J. Chem. Soc. A, (1968) 735; J. R. C. LIGHT AND F. GLOCKLING, J. Chem. Soc. A, (1968) 717.
- 2 R. E. WINTERS AND R. W. KISER, J. Organometal, Chem., 10 (1967) 7.
- 3 S. J. BANO, I. M. T. DAVIDSON, I. L. STEPHENSON AND C. A. LAMBERT, Chem. Commun., (1967) 723.
- 4 J. J. RIDDER AND G. DUKSTRA, Recl. Trav. Chim. Pays-Bas, 86 (1967) 737.
- 5 I. LENGYEL AND M. J. AARONSON, Angew. Chem., 82 (1970) 182; cf., I. LENGYEL AND M. J. AARONSON, Angew. Chem. Int. Ed. Engl., 9 (1970) 161.
- 6 I. LENGYEL AND M. J. AARONSON, Chem. Commun., (1970) 129.
- 7 I. LENGYEL, M. J. AARONSON AND J. P. DILLON, 17th. Annual Conf. Mass Spectrometry and Allied Topics, May 18-23, 1969, Dallas, Texas, Paper No. 140; cf., Abstracts, p. 403.
- 8 M. J. AARONSON, M. S. Thesis, St. John's University, New York, June 1969
- 9 K. BIEMANN, P. BOMMER AND D. M. DESIDERIO, Tetrahedron Lett., (1964) 1725.
- 10 D. B. CHAMBERS, F. GLOCKLING AND J. R. C. LIGHT, Quart Rev. Chem. Soc., 22 (1968) 317.
- 11 D. B. CHAMBERS, F. GLOCKLING AND M. WESTON, J. Chem. Soc. A, (1967) 1759.
- 12 M. GIELEN AND J. NASIELSKI, Bull. Soc. Chim. Belg., (1968) 77.
- 13 S. BOUÉ, M. GIELEN AND J. NASIELSKI, Bull. Soc. Chim. Belg., (1968) 43.
- 14 E. A. V. EBSWORTH, in A. G. MACDIARMID (Ed.), Organometallic Compounds of the Group IV Elements. Vol. 1, Marcel Dekker, New York, 1968, p. 8.
- 15 J. H. ELAND AND C. J. DANBY, J. Chem. Soc., (1965) 5939.
- 16 J. H. BEYNON, G. R. LESTER AND A. E. WILLIAMS. J. Phys. Chem., 63 (1959) 1861.
- 17 E. J. KUPCHIK, J. A. URSINO AND P. R. BOUDJOUK, J. Organometal. Chem., 10 (1967) 269.
- 18 R. E. RHODES, M. BARBER AND R. L. ANDERSON, Anal. Chem., 38 (1966) 48.